

Presented at Bay Area SID, Sep'23rd 2015

http://www.sid.org/Chapters/Americas/BAChapter/Archives/BA2015SeminarArchive.aspx

Market, Technologies, Insights & Opportunities

PORTABLE & IOT DISPLAYS, CHALLENGES & OPPORTUNITIES – PART 1

© 2015, David Wyatt All Rights Reserved

Agenda

- Internal Panel Display Revenue growth
- Technology Progression
- Challenges
- Opportunities : Value in solving the Challenges
- IoT Devices : What those displays will need
- Looking ahead into 2016, 2017, ...

Warning : LCD-centric content ahead, your mileage may vary

Panel Industry Revenue

- Revenue*
 >\$100 billion
 2012 : >\$15bil loss
 2014 : Break Even
- Japan LCD makers losing share, China gaining faster

(*Source : DisplaySearch Industry Report 2013)

Global Large-Sized LCD Panel Market Share Forecast for Suppliers (Market Share Percentage Based on Shipment Volume)

Ra	nk	Company	Country	Q1 '12 Shipments (Thousands of Units)	Q1 '12 Market Share	Q4 '11 Shipments (Thousands of Units)	Q4 '11 Market Share	Q/Q Growth
1	1	LG Display	South Korea	44,535.6	28.1%	44,287.4	27.0%	0.6%
2	2	Samsung	South Korea	36,168.0	22.8%	39,149.1	23.9%	-7.6%
3	3	Chimei Innolux	Taiwan	27,360.6	17.3%	29,912.5	18.2%	-8.5%
4	4	AUO	Taiwan	27,328.0	17.2%	26,857.0	16.4%	1.8%
4	5	BOE	China	7,135.0	4.5%	6,018.0	3.7%	18.6%
6	5	Sharp	Japan	4,450.6	2.8%	5,325.5	3.2%	-16.4%
7	7	IVO	China	4,175.0	2.6%	3,529.0	2.2%	18.3%
8	3	Panasonic LCD	Japan	2,165.0	1.4%	3,200.0	2.0%	-32.3%
9	9	CPT	Taiwan	1,523.0	1.0%	2,145.0	1.3%	-29.0%
1	0	HannStar	Taiwan	1,095.0	0.7%	1,001.0	0.6%	9.4%
		Others	0	2,635.2	2.0%	2,509.2	2.0%	5.0%
		Grand Total		158,571.0	100%	163,933.9	100%	-3.3%
Sou	rce.	IHS iSuppli Rese	arch, May 2012					

>10yr Foundry Investments → Intensely competitive 50~75% of LCD Cost = Depreciation*

© 2015, David Wyatt

What do "Billion Dollar" LCD Fab's look like ?

• Let's pick two orthogonal examples : Sharp, BoE

Sharp Kameyama Fab (Mei Prefecture)

Imagine You are Here

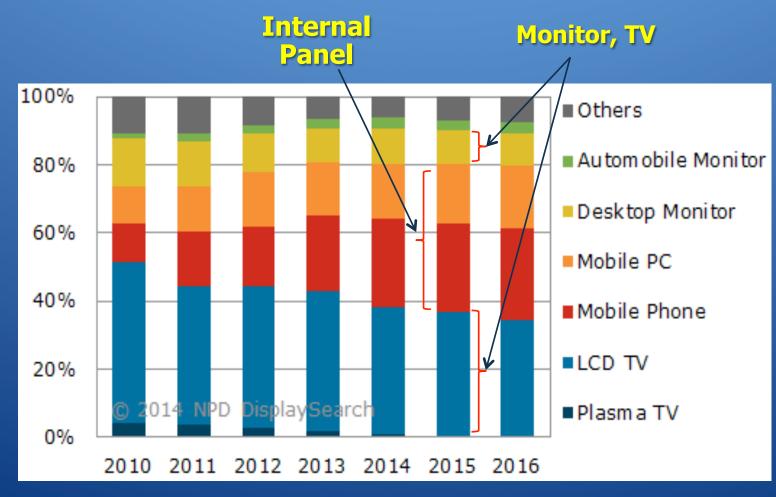
Sharp Kameyama

Speck = Car

BoE LCD Fabs

BoE #4 BeiJing (Gen4-5)

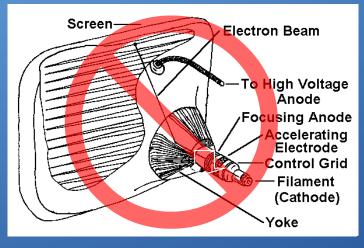
BoE #7 HeFei (Gen8)

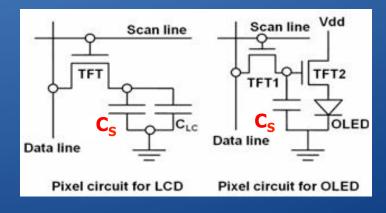

© 2015, David Wyatt

China is investing in yet more TFT Fabs ...

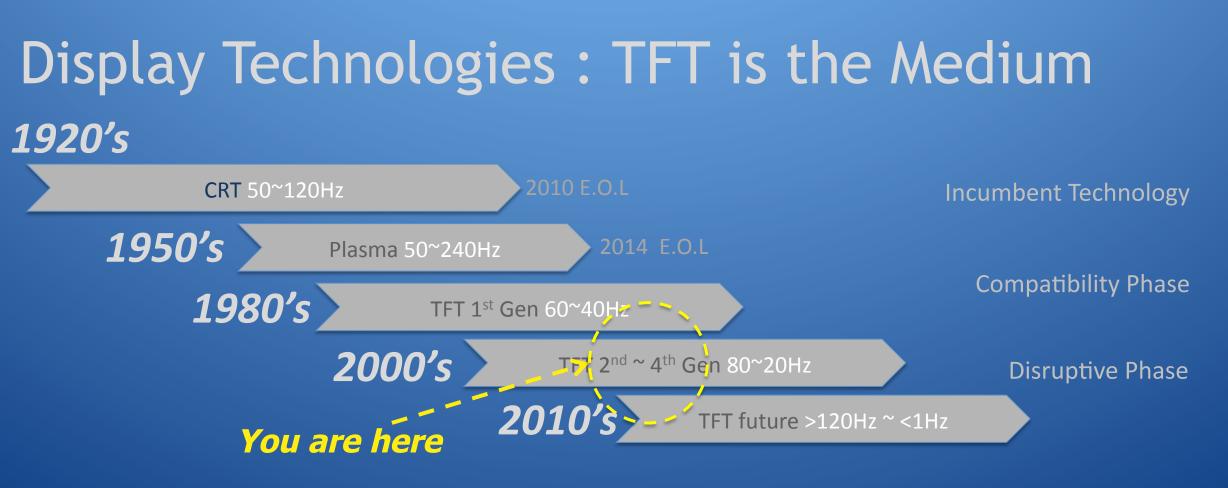
April 2015 : "BOE to splash RMB 70 billion (~\$10bil) on new display fabs" "planned to build a new 10.5 TFT-LCD fab in Hefei, Anhui and an 8.5G fab for the production of new type of displays"

Panel Industry Growth

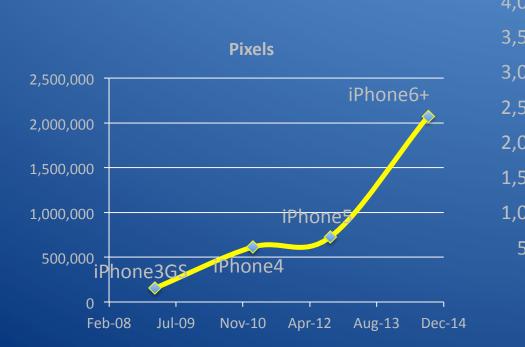

Source : NPD DisplaySearch 2014

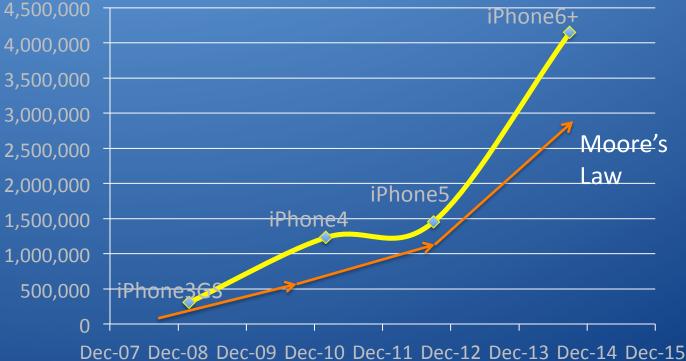

Display Technology has changed

- CRT 50/60Hz Screen Refresh


 1920's Technology
- TFT = Charge-Hold Device

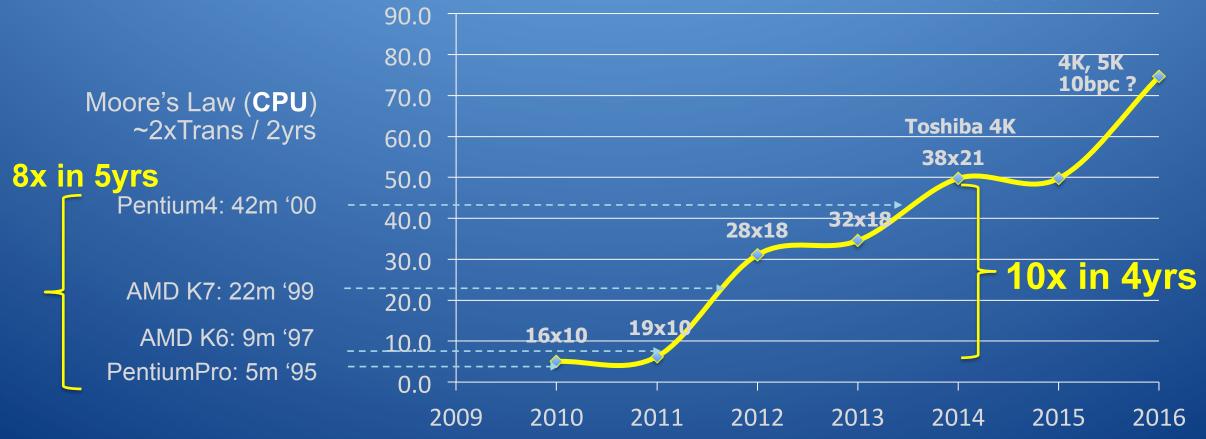
 2~7 transistors per pixel
 Used for LCD, OLED, MEMS, elnk...
 DRAM-like storage capacitor Cs
 No phosphor



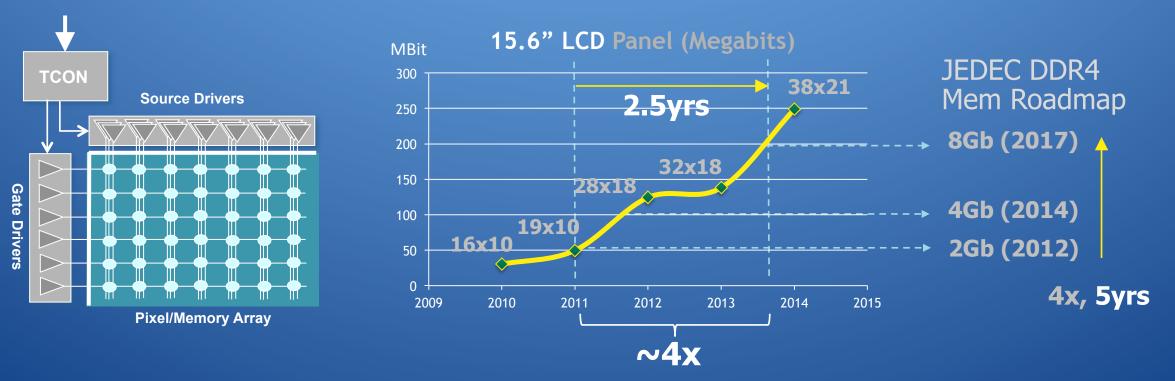

Realization : Not driving a CRT, so why do Fixed 60Hz Refresh ? → sDRRS & G-SYNC

- Key Technologies : IGZO, LTPS, Blue-Phase, Polymer ...
- OLED & LCD Resolution driving TFT transistor count on the Glass

TFT Dynamics : SmartPhone Pixels / Transistors



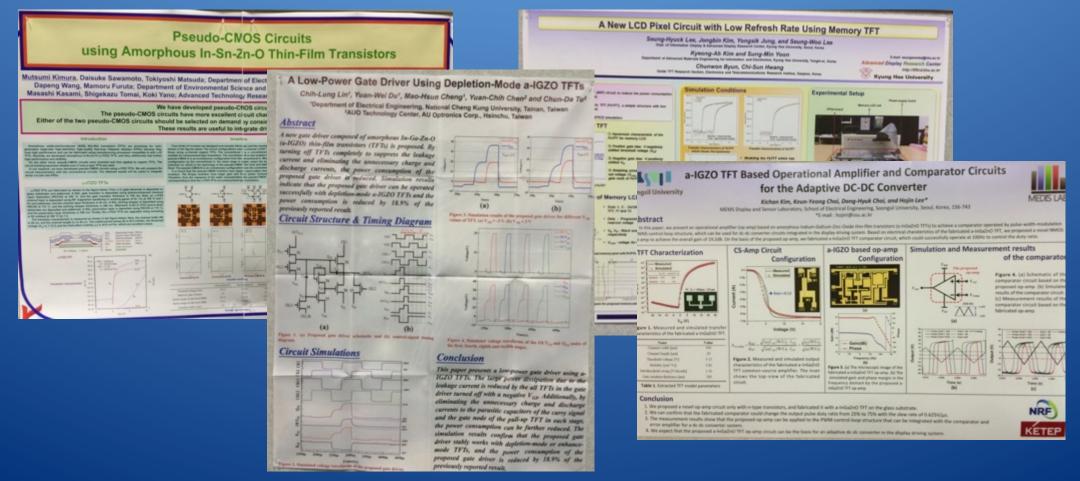
Transistors


15.6" TFT LCD Notebooks

Millions of Transistors (LCD)

TFT on Glass : growing faster than Moore's Law

LCD by Memory bit



- LCD growing twice as fast as DRAM, in Memory Density, based on JEDEC roadmap
- Combination of resolution, color depth, sub-pixels, T/C cell

TCON is the new MCH "Memory Controller Hub" for Pixels

© 2015, David Wyatt

SID Display Week – the revolution is happening, right in front of us

Logic on TFT Glass = Revolutionary IoT Enabler

Sharp: Zero-Bezel Round LCD

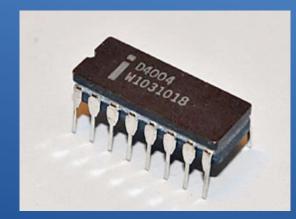
Old Tech : Panel restricted to Rect Bezel

Source Drivers IC's

JDI : RGBW Reflective, SRAM Memory-In-Pixel, 0.000130/160 W

Sharp: Source/Gate Driver-On-Glass

New Generation: Panel is Any Shape

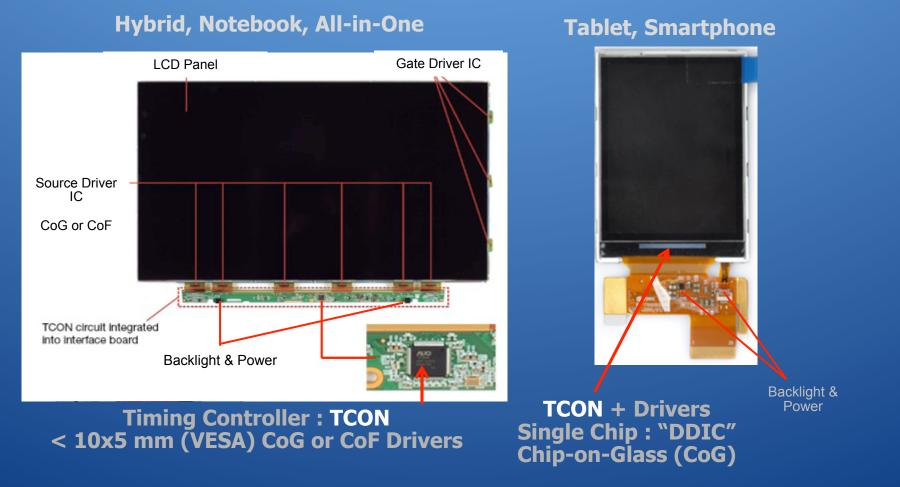


Sharp : Reflective, SRAM Memory-In-Pixel, 0.000010/16 W

© 2015, David Wyatt

But wait a minute ...

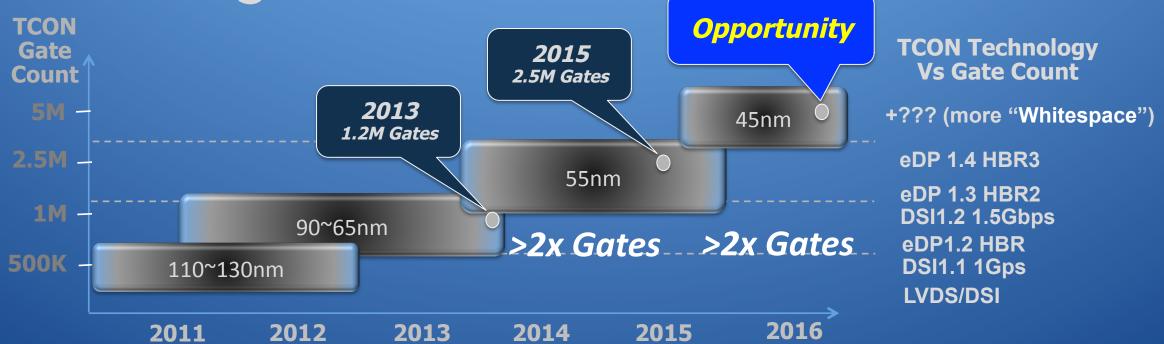
 Rapid growth in Transistor gate count & dynamic Random Access Memory, when was the last time that occurred ... ?


CI 1034 2 1953 15500

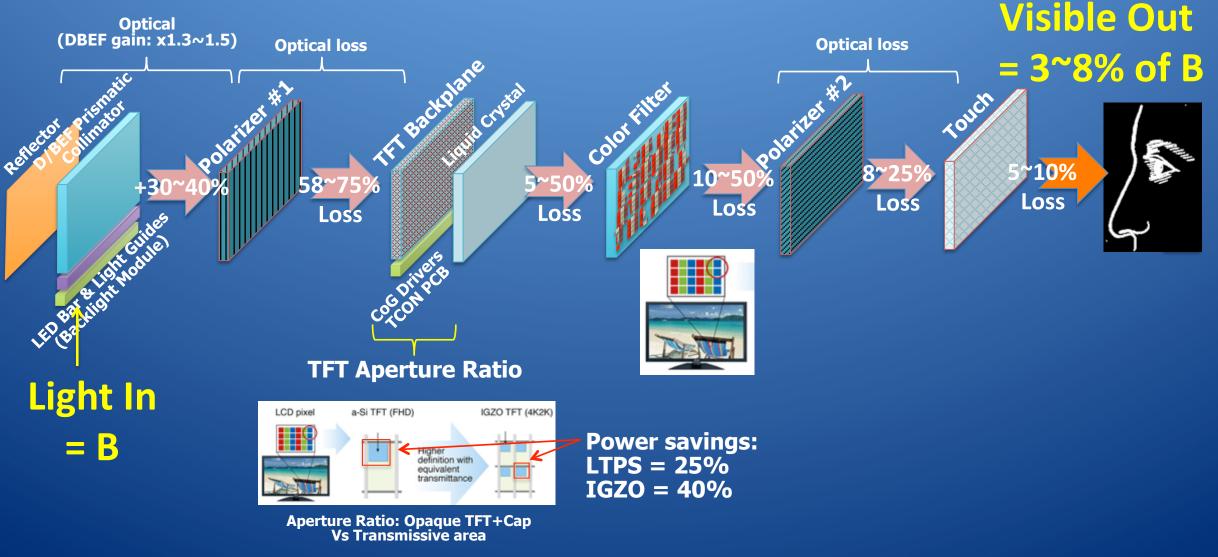
Microprocessor, Intel 4004

Dynamic RAM, Intel 1103

1971 : "Announcing a new era in integrated electronics"


Recap: Internal/Embedded Panel

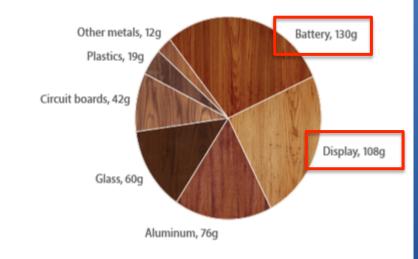
What is a TCON ? http://www.apple.com/imac-with-retina (TCON at offset 1:00min)


© 2015, David Wyatt

TCON Progression

- TCONs have lagged other Semiconductors due to Driver/Glass signaling
 - Required older Analog-friendly Si processes
- But every Year : Vendors → 2x Gate count increase, plenty of Process runway TCON Vendors add digital value, closer to the "Glass"

Step Back - Recap of Normal LCD Stack



By Weight, By Power – most important is ...

Material Use for iPad Air (Wi-Fi + Cellular)

Material Use for iPad Air 2 (Wi-Fi + Cellular)

Power Consumption for iPad Air (Wi-Fi + Cellular)

Mode	100V	115V	230V	
Sleep	0.15W	0.14W	0.16W	
Idle—Display on	3.17W	3.20W	3.62W	
Power adapter, no-load	0.043W	0.042W	0.048W	
Power adapter efficiency	84%	84%	80%	

Power Consumption for iPad Air 2 (Wi-Fi + Cellular)

Mode	100V	115V	230V
Sleep	0.22W	0.22W	0.26W
Idle—Display on	3.13W	3.14W	3.21W
Power adapter, no-load	0.09W	0.09W	0.09W
Power adapter efficiency	80%	81%	80%

Source : http://www.apple.com/environment/reports/

iPad BOM Cost Analysis – Value of Display IP

iPad 2 (2nd gen)

f Retina	\bigcirc		
	<u> </u>	iPad	Ret
		nau	

Pad Retina (4th gen)

iPad 2 Air

Component	Estimate	
Display 9.7" 1024x768 IPS	\$57	
Touchscreen	\$40	
32GB Flash, 2GB DRAM	\$67	
Processor A5	\$14	
Battery 43WHr	\$23	
Cameras 4MP+1.2MP	\$12	
Audio, etc	\$35	
Enclosure, PCB's, Cables	\$42	
Assembly & Test	\$5	
BOM Cost	\$295	
MSRP 32GB WiFi No-3G	\$599	
Thickness	13.4mm	
Weight	680g	

Component	Estimate	
Display 9.7" 2048x1536 (LG A-Si IPS)	\$87	
Touchscreen	\$40	
64GB Flash, 2GB DRAM	\$67	
Processor A5X	\$23	
Battery 32.9WHr	\$32	
Cameras 8MP+1.2MP	\$12	
Audio, etc	\$35	
Enclosure, PCB's, Cables	\$42	
Assembly & Test	\$5	
BOM Cost	\$343	•
MSRP 64GB WiFi no-3G	\$599	
Thickness	7.1mm	
Weight	650g	

Component	Estimate	
Display 9.7" 2048x1536 (Sharp IGZO)	\$77	
Touchscreen	\$38	
64GB Flash, 2GB DRAM	\$45	
Processor A8X	\$22	
Battery 27.6WHr	\$15	
Cameras 8MP+1.2MP	\$11	
Audio, Sensors, Power, WiFi/GPS, Misc	\$35	
Enclosure, PCB's, Cables	\$42	
Assembly & Test Wow !	\$5	
BOM Cost	\$290	
MSRP 64GB WiFi no-3G	\$599	
Thickness	6.1mm	
Weight	437g	

© 2015, David Wyatt

Source : IHS Technology & iSuppli reports

All Rights Reserved

Display IP => Thinner, cheaper, lighter, faster ²²

Conclusion

- Solving mobile platform challenges with TFT Display Technology improvements (e.g. IGZO) enabled:
 - Platform paradigm shift
 - Enhanced usability
 - BOM cost & profitability improvements

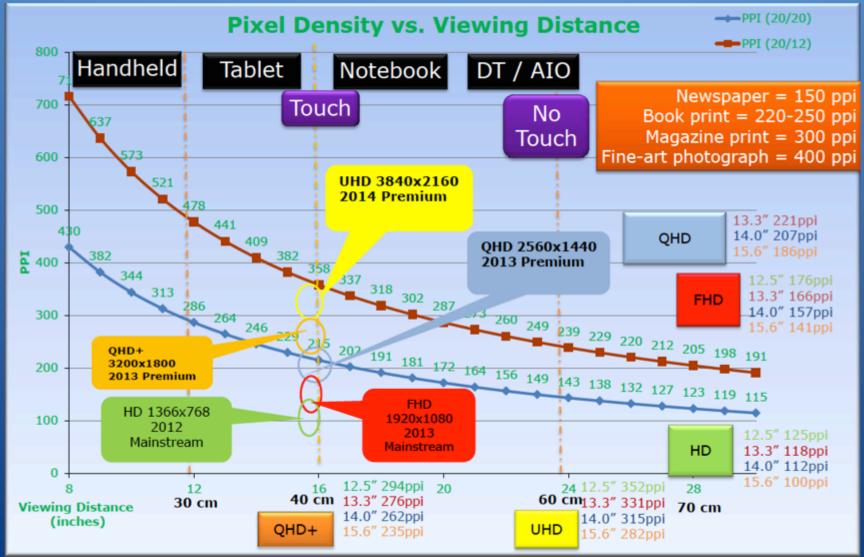
Looking 1yr ahead

2016 : The new wave of UHD Content/Displays

CinemaCon : Launched April 23rd 2015 DC Cinema Today: "Dolby Showcases End-to-End Innovation for Cinema" "Dolby Impresses CinemaCon with 1,000,000:1 HDR"

The Hollywood Reporter: "previously reported ... both Star Wars: The Force Awakens and Kosiniski's upcoming Tron sequel will be released in Dolby Vision"

Technicolor June 2014 : ... plays back on legacy SDR TVs and new HDR TVs coming to market.


Amazon http://www.digitaltrends.com/home-theater/amazon-will-bring-hdr-this-year-transparent-bosch/

Netflix http://www.wired.com/2015/03/netflix-will-remake-image-tv/

BD-UHD Launch : Sep'2015 (Samsung IFA, Berlin) TV's & Players : Xmas'15 ~ CES'16

http://www.extremetech.com/extreme/213396-samsung-launches-first-the-worlds-first-4k-blu-ray-player

4K who cares ? Pixels Per Inch maxed out ?

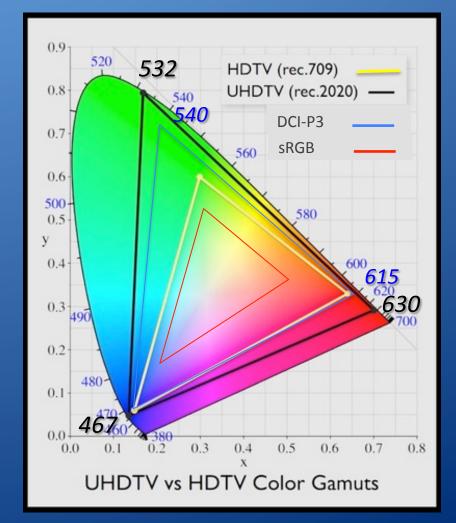
Intel IDF 2013

© 2015, David Wyatt

"UHD" Content = HDR Localized Highlights

- HDR requirement : 10% localized highlight 750~1000nits
- Background max : 400 nits

© 2015, David Wyatt


"UHD" Content = Color Gamut Advancement

• Today : sRGB (~72% NTSC)

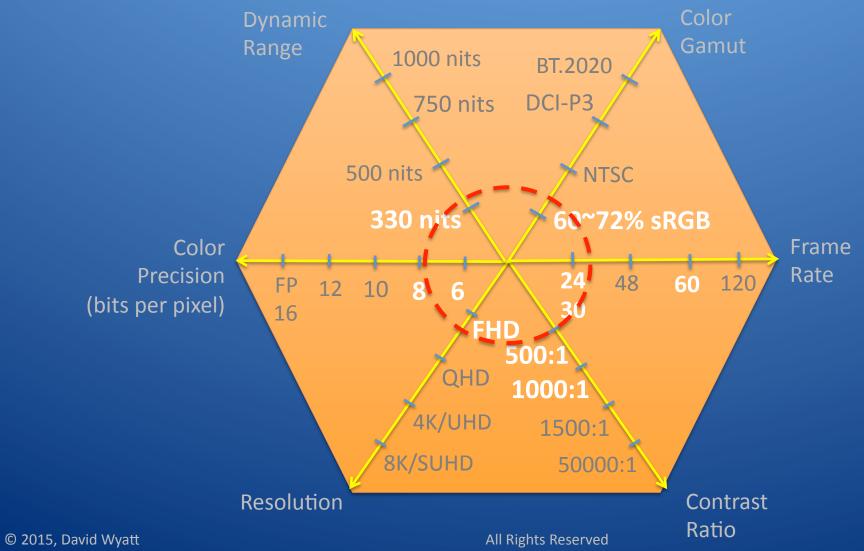
- Portable devices mostly LCD (60~72%)
- Internet & HD content

• First step : DCI-P3 (~110% NTSC)

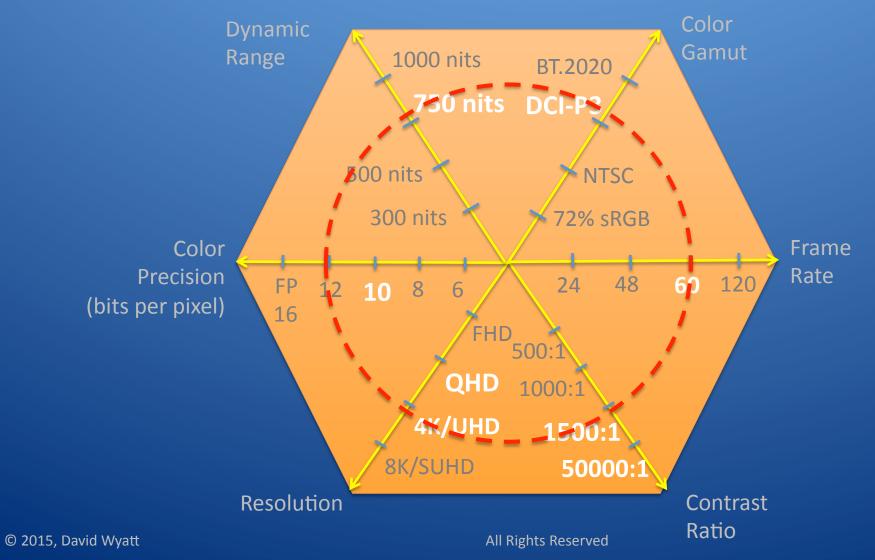
- Movie camera, content, cinema
- Backwards/forward compatible
- Longer Goal : BT2020 (~150% NTSC)
 - "Superset" container
 - Fully contains DCI-P3
 - Fully contains NTSC / sRGB

"UHD" Content = 10x Bandwidth & Power

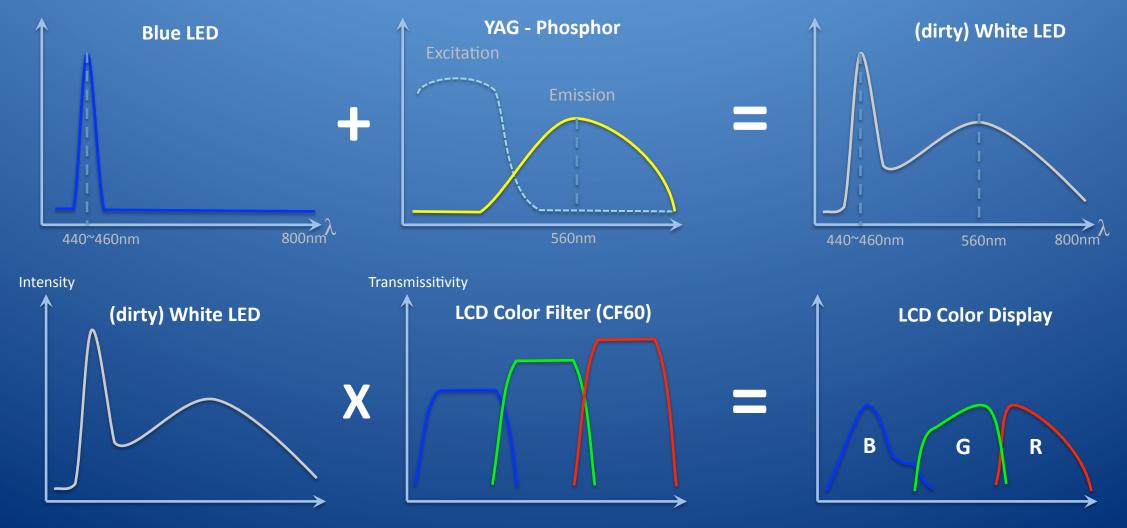
- BluRay (FHD) → BluRayUHD (4K)
 - More Pixels (4x)
 - 30 → 60fps (2x)
 - 18/24bit → 30/36 bit per pixel (1.25~1.5x)
 - →10~12x Bandwidth (20x for 4K-Stereo3D)

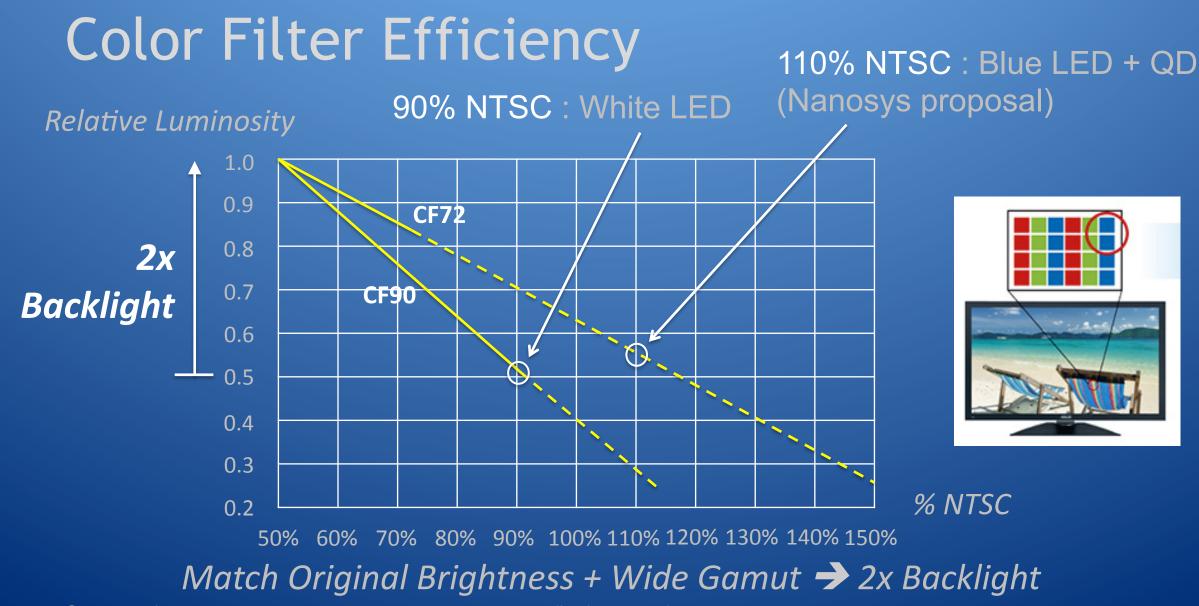


DRAMATIC 4K EXPERIENCE

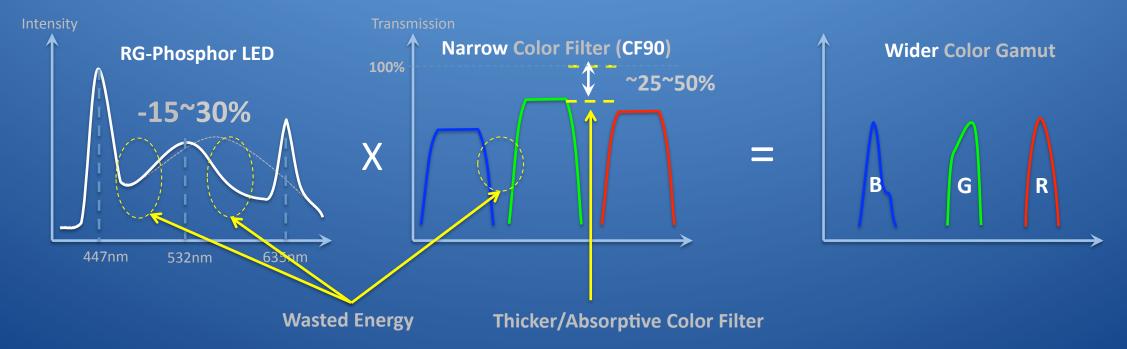

- Reminder : Power = VI_L + akV^2F
 - So if F(frequency) or a(activity) = 4x increase, Power increase = Linear
 - But higher F also requires higher Voltage = Cubic increase in power

Opportunity : Efficiency improvements


Today's Portable Display Experience

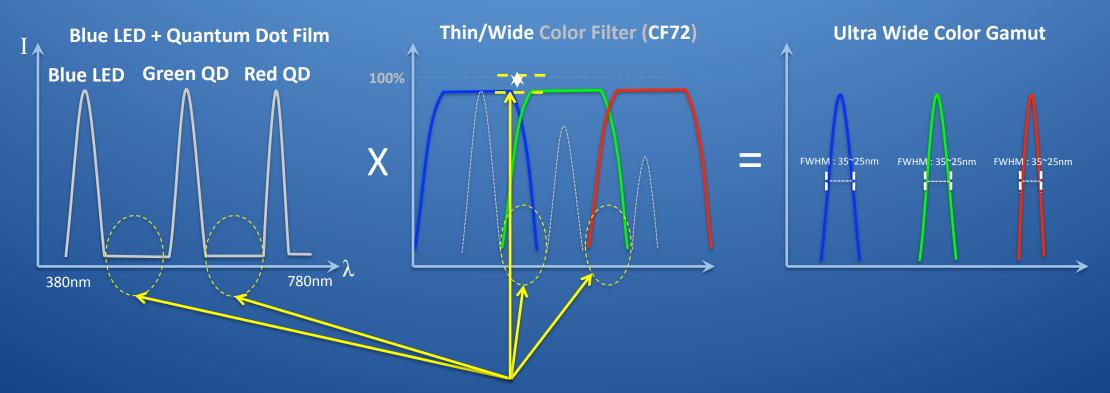


2016 "UHD" Display Experience


LCD Recap – White LED Backlight

"Wide Gamut" LED

Example : Nichia NS2W266F-HG



Total Backlight Power Increase : 1.8~2.4x

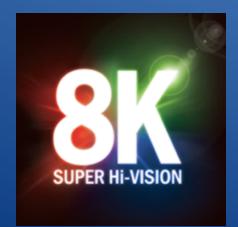
Example 9.7" Retina Tablet

LGD LP097QX1 \$87	Today : Max 440 cd/m ²	HDR-Only: 750 cd/m ²	10% 750 cd/m² + 90% 400 @ P3	
Contrast Ratio	1000:1	1000:1	>50,000:1 (Regional Backlight)	
Color Space (% NTSC)	94.4%	94%	110%	
#LEDs (3.0mm x 0.4)	2x 42pcs = 84pcs 49pcs (4.2mm)	143 pcs (1.7x) 83pcs (4.2mm)	184pcs (2.2x) 108pcs (4.2mm)	
LED BOM Cost	\$13.27	\$22.60 (+\$9.33)	\$29.20 (+\$16.64)	
Backlight Bar	2 S-edge (49pcs @3m) 🗸	2 S-edge (35pcs @4m) 🗡 2 L-edge (46pcs @4m) 🗹	2 L-edge (46pcs @4m) ✗ 2L + 2S (162pcs @4m) ✓ (4 edges !)	
B/L Power (max)	4.4W	8.9W*	11.6W*	
Battery Life (Video, 42.5WHr)	400nits 5.57Hrs 200nits 10 Hrs 4.25	4.08 Hrs	3.22 Hrs	
Battery Cost (10Hrs)	\$31	\$72 (+\$41)	\$91 (+\$43)	
Total BOM Cost Adder	\sim	>\$50	>\$60	
© 2015, David Wyatt	5, David Wyatt All Rights Reserved NB : IGZO 25~30% more efficient, only 2 edge backlight 36			

Quantum Dot

Wasted energy minimized = +20~30% Efficiency Improvement but : \$\$\$ Cost, Thickness, Thermal/O₂ Stability, Heavy Metals : Cd

Conclusion


- Tsunami of UHD content in 2016
 UHD not just about 4K: More Pixels, it's about HDR/WCG: Better Pixels
- Compelling experience, very-high WAF* for new product sales

 We're all going to want to see this on Mobile/Portable Platforms
 LCD technology needs revolutionary improvements to get there
- Opportunities :
 - Brightness, Wider Color Gamut, Color Depth, Bandwidth, Power
 - Revolutionizing the Light source itself
 - * "Wife Acceptance Factor"

Looking >1yrs ahead

8K – Super Vision

- Goal : Broadcast 2020 Olympics in 8K
- NHK & Government
- BT2020 Color Space
- HDR

Live color grading in 8K, Astrodesign Tokyo


© 2015, David Wyatt

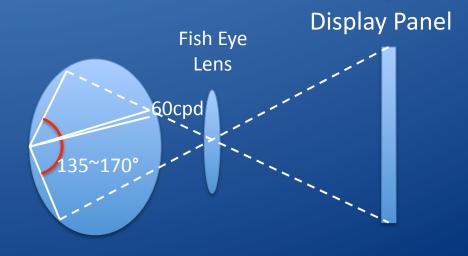
What PPI/Res Limit ?

- OLED 8K 13.3"
 SID San Diego 2014
- Challenges :
 - OLED: power distribution across TFT matrix
 - Voltage droop
 - LCD : Aperture ratio
 - TFT storage cap size based on leakage
 - How can LCD keep up with OLED ?
 - Remove Storage Cap ?

LCD Aperture Ratio Example Mask & Opaque Storage Cap vs Transmission

4K, 8K too much ? ... along comes VR

Ideal Head Mounted VR Display (SOL)

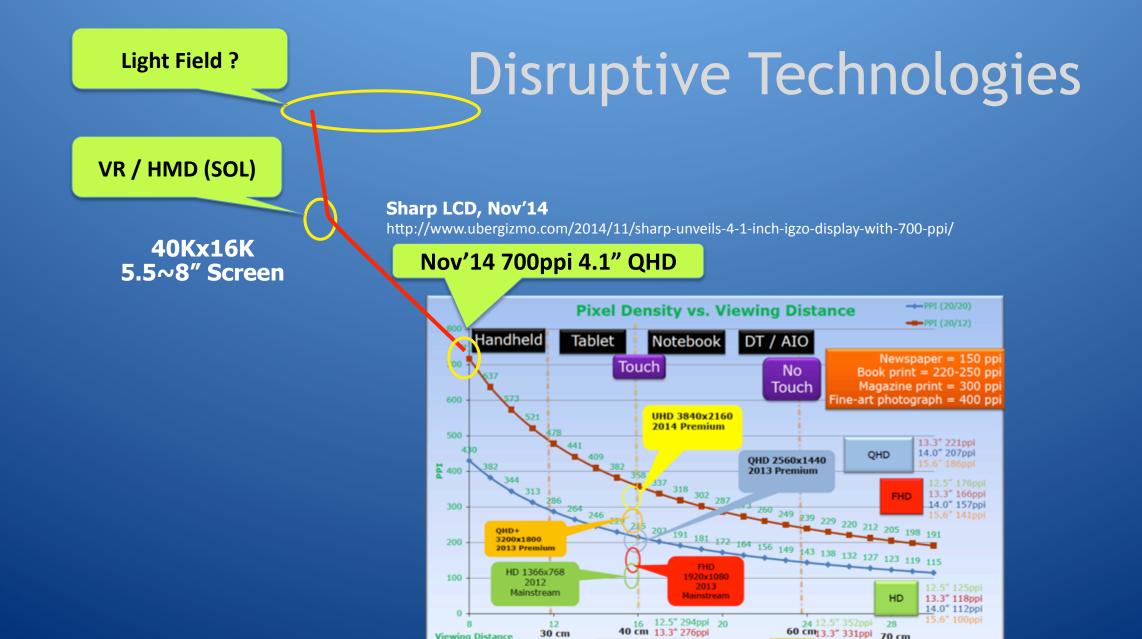

- 20/20 human acuity : ~60 CPD* (cycles per degree) at fovea
 - Apply Nyquist rule : 1 Pixel = 2x cycles
- Human field of view: about 170° × 135°
 - 10,200 × 8,100 cycles *per eye*

→Or a single Display Panel of 40K x 16K pixels

- Independent of panel size or PPI — 5-7" for practical reasons
 - (bulk, weight)

*Michael Deering, 2nd Int'l Immersive Projection Tech Wkshp, 1998 *Barten, Peter G, Contrast Sensitivity of the Human Eye

© 2015, David Wyatt



Ideal Head Mounted VR Display (SOL)

- Has a Color Gamut equal to CIE 1931 color gamut

 BT.2020 only surface colors, doesn't cover radiated e.g. Neon signs
 Matches exactly what your eye will see "crossing the uncanny valley"
- Has a High-Dynamic Range of 10¹⁴:1

 Human vision spans from 10⁻⁶ nits to 10⁸ nits (not incl. looking at Sun)
 However: enclosure allows operating at a fraction of this range
- Should operate at same brightness as indoors/daylight
 Avoid the after-shock of removing VR headset

30 cm

14.0" 262ppi

OHD+

All Rights Reserv

Viewing Distance

(inches)

© 2015, David Wyatt

70 cm

14.0" 315ppi

UHD

Looking ahead >1yrs IoT

IoT Digital Signage – Everywhere

LED Signage everywhere - Power Consumption ? Time for : Electrowetting, elnk, Reflective-LCD

All Rights Reserved

Power Matters for Portable / IoT Devices

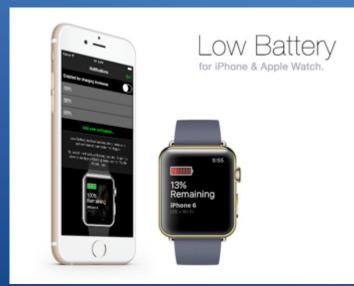
• It drives Usability, Battery, Weight, Form-factor, Cost

Green-tech is not just a fashion

 − Now a voter & lobbyist magnet
 → Enter the regulators, lawyers

California Energy Commission

- 36mil Personal Computers (PC's) in California
 9.6m Desktop, 3.6m AIO Desktop & 23m Notebooks
- Current statewide PC computing energy use in 2013 is between 4-7 TWH = city of Los Angeles!
- CEC targeting wasted energy
- Proposal to reduce PC energy, takes effect Jan'17 & Jan'18 http://www.energy.ca.gov/appliances/2014-AAER-2/prerulemaking/


Case Example : Tokyo Central Station

- Tokyo Central upgraded walkways to LCD Based digital signage
- JR had to install additional sub-station & transformer to handle the load
- Cost overrun : \$Millions

Personal IoT Example – Display Matters

There's an App for that

©BenGuild http://benguild.com/2015/06/06/low-battery-for-ios-apple-watch/

OLED = 1 day

 $LCD = 7^{10} days$

© 2015, David Wyatt

IoT : Close & Personal

0.8mm thick Battery-life in months/years

Card⁺

197

5% cashback

COIN

Challenges Recap

• UHD

– Spectral Purity, Color, Brightness, Power, Cost, Bandwidth

- LCD + 4K / 8K
 - Backlight Source : >2x Brightness, >4x Color Gamut
 - Color Filter & Aperture Ratio Transmissitivity
 - Power, Brightness challenges for Mobile/Handheld Platforms
- IoT

– Power, color, thinness, flexibility, weight, daylight viewing

Opportunities – what is needed is ...

- Better quality light source (other than Blue + Yellow = dirty-white)
- More efficient LCD optical stack (than absorption polarizers)
- More efficient Color Filtering (than lossy absorption filter)
- Higher Dynamic Range (SMPTE:2084 10bit + PQ, 12bit, 16bit Float)
- Wide color depth 10bpc (more than 8bits per component)
- Localized highlight control (edge-lit regional backlight)
- More-efficient Sub-Pixels : RGBY (Sharp), RGBC (AuO), ... ?
- Smarter, lower-power, more-colorful displays
 - Memory & Transistor Circuits in Pixel

Summary

- Displays Everywhere
- Growth in Pixels unstoppable, and Better Pixels are coming
- 2016 = UHD Tsunami, consumer demand for UHD portable displays
- Brightness & Color matter, so does Power
- Solving these challenges is valuable and enables IoT usage models
- TFT Everywhere : TCON = MCH ? LCD Foundries = the next Intel(s) ?
 Moore's Law was the foundation of many Business Models

All Rights Reserved

Backup


TFT Backplane (OLED/LCD)

		Best High							
	Claimed : Simplest. Cheapest	A-Si Amor	Refresh Range	LTPS Low-Temp Poly Si	IGZO Oxide	Best Low Refresh Range			
Electron Mobility (higher=bette			1 cm²/V-sec))	Best (>100)	Better (>10 n²/V-sec)				
Off Leakage Current (lower=bette			0 ⁻¹²)	Better (10 ⁻¹⁴)	Best (10 ⁻¹⁵)				
Deposition Process (lower=better)				600°C	Room Temp				
Process Complexity			4~5 steps)	High (5~11 steps)	Low (5~7 steps)				
Pixel Complexity			(4T/5T + 1/2C)	High (5T + 2C)	Lo/Hi (2/6T+1/2C)				
Process Scalability			0 (2.8mx3.1m)	Gen5 (1.1mx1.2m)	Gen10 (2.8mx3.1m)				
Mura (Uniformity)				Ok : Inter-column	Ok : Regional				
Driver Integration (cost/low profile)			ıl	Yes	Yes				
Practical DPI (backlight, power, speed)			орі	>500ppi	>500ppi				
Practical High Ref (w/o overdrive)			Z	<120Hz	>80Hz				
Practical Low Ref (w/o flicker)			Z	>30Hz	>20Hz				
Practical Application			r 300ppi	Panels ≤10"	7"				
© 2015, David Wya	tt		All Rights Reserved			57			

iPhone BOM Cost

Preliminary iPhone 5 Bill of Materials and Manufacturing Cost Estimate Based on Virtual Te (Costs in U.S. Dollars)

		iP	hone 5 Mo
Components / Hardware Elements	iPhone 5 Hardware Comments	16GByte	32GByte
Pricing without Contract		\$649	\$749
Total BOM Cost		\$199	\$209
Manufacturing Cost		\$8.00	\$8.00
BOM + Manufacturing		\$207	\$217
Major Cost Drivers	÷	4	
Memory			
NAND Flash		\$10.40	\$20.80
DRAM	1GByte LPDDR2	\$10.45	\$10.45
Display & Touchscreen		\$44.00	\$44.00
Processor	A6 Processor	\$17.50	\$17.50
Camera(s)	8 Megapixel + 1. 2 Megapixel	\$18.00	\$18.00
Wireless Section - BB/RF/PA	Qualcomm MDM9615+RTR8600+Front End*	\$34.00	\$34.00
User Interface & Sensors		\$6.50	\$6.50
BT / WLAN	BTv4.0 + Dual-Band Wireless-N	\$5.00	\$5.00
Power Management		\$8.50	\$8.50
Battery	Assumed 1800mAh	\$4.50	\$4.50
Mechanical / Electro-Mechanical		\$33.00	\$33.00
Box Contents		\$7.00	\$7.00
* Annual			

\$227.00

\$11.00

\$242.50

\$11.00

\$6.00

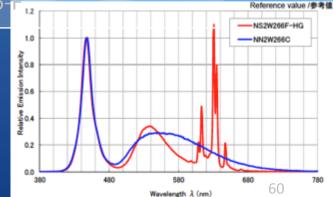
* - Assumed

Source: IHS iSuppli Research, September 2012

Teardown.....

© 2015, David Wyatt

\$250


101 0 14

				Octob	er 2014						_			Apple iP	ad Air 2		
													Fi + Cellu			WiFI	
				Comp	onents /	Hardwar	re Eleme	iPad Ai	r Hardwar		ents	16GB		128GB			128GB2
	-								Retail Pr	icing		\$629	\$729	\$829		\$599	\$699
	Id BON	Λ			OM Cost							\$305	\$325	\$352	\$270	\$290	\$317
IPA					acturing (\$6.00	\$6.00	\$6.00	\$5.00	\$5.00	\$5.00
		•			Manufa						_	\$311	\$331	\$358	\$275	\$295	\$322
					Cost Dri	vers											
2. 일반 사양		New iPad Preliminary Bill of Materials	-		s							\$6.75	\$27.00	\$54.00	\$6.75	\$27.00	\$54.00
			iPa				riPad (3rd	Generat		DR3			\$18.00				
1) 대각 크기	: 9.7*			WiFi + 3G		WiFi	Ì		WIEI 536 IF	S Mode			\$77.00				
2) 표시 영역	: 196.608(H)×147.456(V) [mm]	Components / Hardware Elements	16GB	16GB3	16GB6	32GB7	64GB8	16GB9	32G GF2		-		\$38.00				
	: 2048 × RGB × 1536 pixels, R	Retail Pricing (As of March 2012)	\$399.00	\$529.00	\$499.00	\$599.00	\$699.00	\$629.00	\$725roces	ssor + M8	Co-						
4) 화소 피치	: 192(H) X 192(V) [[m]	Total BOM Cost	\$236.95	\$262.55	\$306.05	\$322.85	\$356.45	\$347.55	\$364 Price	e includes	s M8	\$22.00	\$22.00	\$22.00	\$22.00	\$22.00	\$22.00
5) 모듈 크기	: 208.881(H)×167.123(V)×2.68	Manufacturing Cost	\$8.15	\$8.45	\$10.00	\$10.00	\$10.00	\$10.75	\$1Groce	ssor							
	: Transmissive & Normally Black	BOM + Manufacturing	\$245.10	\$271.00	\$316.05	\$332.85	\$366.45	\$358.30	\$379 + 1.	2MP		\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00
	: 16,777,216 Colors (8 bit)	Major Cost Drivers								alcomm							
8) 시야각	: 80°/80°/80/80°(CR > 10) Typ.	Memory								TD462E		633 00	600.00	E33 001			
9) 주시야각	: 6시 방향	NAND Flash	\$16.80	\$16.80	\$16.80	\$33.60	\$67.20	\$16.80	\$3								
10) 공급 전압	: 3.3 [V]	DRAM	\$7.60	\$7.60	\$13.90	\$13.90	\$13.90	\$13.90	S1		Wi-Fi	+ Cellula	ar		W	/i-FI	
11) 모듈 무게	: 134g(헙의中) (Max.)	Display & Touchscreen							ents	16GB	32GE	3 64GE	3 128G	3 16GB2	32GB3	64GB4	128GB5
12) 표면 처리	: Glare, Anti-reflective treatment	Display	\$57.00	\$57.00	\$87.00	\$87.00	\$87.00	\$87.00	\$8	\$629	\$729	\$829	\$929	\$499	\$599	\$699	\$799
13) 백라이트	: White LED 2 array(42ea x2)	Touchscreen	\$40.00	\$40.00	\$40.00	\$40.00	\$40.00	\$40.00	\$4	51%	56%	60%	61%	45%	53%	58%	59%
14) 인터페이스	: eDP 4lane	Processor	\$14.20	\$14.20	\$23.00	\$23.00	\$23.00	\$23.00	\$2								
15) 소비 전력	: 6W(Typ.) [1W(Logic, Typ.) + 4	Camera(s)	\$4.10	\$4.10	\$12.35	\$12.35	\$12.35	\$12.35	S1	\$304	\$313	3 \$325	5 \$ 355	\$269	\$278	\$290	\$320
		Wireless Section - BB/RF/PA (Module)		\$25.60				\$41.50	S4								
		User Interface & Sensors & Combo	\$15.35	\$15.35	\$15.00	\$15.00	\$15.00	\$15.00	S1	\$6	\$6	\$6	\$6	\$5	\$5	\$5	\$5
	인쇄된 표준은 최신본이 아닐 수 !	Module (WLAN/BT/FM)	\$15.55	\$15.55	\$15.00	\$15.00	\$15.00	315.00	- P1	\$310	\$319	\$331	\$361	\$274	\$283	\$295	\$325
	신쇄신 표준은 의신은이 아들 수 :	Power Management	\$5.85	\$5.85	\$10.00	\$10.00	\$10.00	\$10.00	S1								
		Battery	\$22.75	\$22.75	\$32.00	\$32.00	\$32.00	\$32.00	\$3								
		Mechanical / Electro-Mechanical /	\$47.80	\$47,80	\$50.50	\$50.50	\$50.50	\$50.50	S 5				-				
		Other	1000000	10.0000	1000100	1 200105	1.00000	1000000		\$9.20	\$18.0						\$60.00
		Box Contents	\$5.50	\$5.50	\$5.50	\$5.50	\$5.50	\$5.50	S	\$10.50	\$10.5	60 \$10.5	0 \$10.5	\$10.50	\$10.50	\$10.50	\$10.50
		Source: IHS iSuppli Research, March 2011	2														
			Disp	lay				9.7" 2048	x 1536	\$90.00	\$90.0	0 \$90.0	0 \$90.0	\$90.00	\$90.00	\$90.00	\$90.00
										4							
			Touc	h Screen				COP Film	Sensor	\$43.00	\$43.0	0 \$43.0	0 \$43.0	\$43.00	\$43.00	\$43.00	\$43.00
			Drog	essor			64-Bit	A7 Proces	ssor + M7 Co)- \$18.00	\$19.0	0 \$12.0	0 \$18.0	\$18.00	\$12.00	\$18.00	\$18.00
			PTOC	.63501				Proces	SSOF	φ10.00	φ10.0	φ 16.0	σ φ18. 00	φ18.00	φ18.00	φ18.00	φ18.00
© 2015, L	avid Wyatt																

LED Efficiency – Nichia case example

	Flux	Intensity	Efficiency	Size	Example	Est. Cost
Standard W-LED	~8 lm	~2.5 cd		3.0x0.85x0.4	NSSW306-F	\$0.132
Single RG-LED	~6.8 lm	~2.3 cd	110~120 lm/W	3.0x0.85x0.4	NSSW306-F	
Standard W-LED	~9.5 lm	~2.8 cd	140~165 lm/W	3.0x0.85x0.6	NSSW306-F	\$0.158
Single RG-LED	~8.1 lm	~2.7 cd	140~ lm/W	3.0x0.85x0.6	NSSW306-HG	
Double W-LED	16.4 lm	4.5 cd	125~155 lm/W	4.2x1.0x0.6	NSSW266-F	\$0.268
Double RG-LED	14.5 lm	4.5 cd	120~145 lm/W	4.2x1.0x0.6	NSSW266-F	
					1.0	

Source : http://www.nichia.co.jp/en/product/led_search.html?op=cond=application=%27LCD%20Backlighting%27

Nanosys QD Proposal

Adobe RGB Case - QDEF Efficiency vs. Color Gamut Size Modeled based on Interpolated Average Color Filter Functions 120 CF72 Color Filter + ODEF Relative System Efficiency (%) 07 09 09 08 001 "CF90+" Color Filter + YAG (less than Adobe RGB performance) 86 QDEF results in ~50% dobe efficiency improvement for n Adobe RGB. 100 120 80 60 Color Gamut (% NTSC) --- QD Backlight --- White LED Backlight

Figure 5. Modeling analysis showing relative LCD system efficiency. The Adobe RGB color gamut can be achieved using QDEF or highly saturated color filters; the QDEF displays are approximately 50 percent more energy-efficient than displays using the more saturated (CF90+) color filters.

https://www.nanosysinc.com/s/high-efficiency-lcds-using-quantum-dot-films.pdf