Making Virtual Reality better than Reality?

Gordon Wetzstein Stanford University

SCI STANFORD COMPUTATIONAL IMAGING LAB

www.computationalimaging.org

Personal Computer e.g. Commodore PET 1983

Smartphone e.g. Google Pixel

TRANSTON

AR/VR e.g. Microsoft Hololens

A Brief History of Virtual Reality

Stereoscopes Wheatstone, Brewster, ... VR & AR Ivan Sutherland Nintendo Virtual Boy VR explosion Oculus, Sony, HTC, MS, ...

Where we are now

Magnified Display

Oculomotor Cue

ciliary muscles

Stereopsis (Binocular) Focus Cues (Monocular) Oculomotor Cue extraocular muscles 12 Vergence Accommodation Visual Cue **Binocular Disparity Retinal Blur**

Visual Cue

Oculomotor Cue

Stereopsis (Binocular)

Focus Cues (Monocular)

Retinal Blur

Visual Cue

Oculomotor Cue

Stereopsis (Binocular)

Focus Cues (Monocular)

Retinal Blur

How Many People Have Normal Vision?

all numbers of US population

Modified from Pamplona et al, Proc. of SIGGRAPH 2010

Computational Near-eye Displays

- <u>Q1</u>: Can computational displays effectively replace glasses in VR/AR?
- <u>Q2</u>: How to address the vergence-accommodation conflict for users of different ages?
- <u>Q3</u>: What are (in)effective near-eye display technologies?

possible solutions: gaze-contingent focus, monovision, multiplane, light field displays, ...

- <u>Q1</u>: Can computational displays effectively replace glasses in VR/AR?
- <u>Q2</u>: How to address the vergence-accommodation conflict for users of different ages?
- <u>Q3</u>: What are (in)effective near-eye display technologies?

<u>possible solutions</u>: gaze-contingent focus, monovision, multiplane, light field displays, ...

Fixed Focus

Adaptive Focus - History

- M. Heilig "Sensorama", 1962 (US Patent #3,050,870)
- P. Mills, H. Fuchs, S. Pizer "High-Speed Interaction On A Vibrating-Mirror 3D Display", SPIE 0507 1984
- S. Shiwa, K. Omura, F. Kishino "Proposal for a 3-D display with accommodative compensation: 3DDAC", JSID 1996
- S. McQuaide, E. Seibel, J. Kelly, B. Schowengerdt, T. Furness "A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror", Displays 2003
- S. Liu, D. Cheng, H. Hua "An optical see-through head mounted display with addressable focal planes", Proc. ISMAR 2008

Padmanaban et al., PNAS 2017

Padmanaban et al., PNAS 2017

EyeNetra.com

at ACM SIGGRAPH 2016

participants of the study, 152 total

at ACM SIGGRAPH 2016

Participants - Prescription

n = 70, ages 21-64

Padmanaban et al., PNAS 2017

Task

How sharp is the target? (blurry, medium, sharp) Is the target fused? (yes, no)

Padmanaban et al., PNAS 2017

Results - Fusion

Results - Fusion

Padmanaban et al., PNAS 2017

Computational Near-eye Displays

- <u>Q1</u>: Can computational displays effectively replace glasses in VR/AR?
- <u>Q2</u>: How to address the vergence-accommodation conflict for users of different ages?
- <u>Q3</u>: What are (in)effective near-eye display technologies?

possible solutions: gaze-contingent focus, monovision, light field displays, ...

Conventional Stereo / VR Display

vergence accommodation

Consequences of Vergence-Accommodation Conflict

 Visual discomfort (eye tiredness & eyestrain) after ~20 minutes of stereoscopic depth judgments (Hoffman et al. 2008; Shibata et al. 2011)

 Degrades visual performance in terms of reaction times and acuity for stereoscopic vision (Hoffman et al. 2008; Konrad et al. 2016; Johnson et al. 2016)

Removing VAC with Adaptive Focus

vergence accommodation

Task

Follow the target with your eyes

Padmanaban et al., PNAS 2017

Presbyopia

Nearest focus distance

Duane, 1912

Presbyopia

Padmanaban et al., PNAS 2017

Padmanaban et al., PNAS 2017

Age-dependent Fusion

Age-dependent Fusion

Age-dependent Fusion

Age-dependent Sharpness

Age-dependent Sharpness

Age-dependent Sharpness

- <u>Q1</u>: Can computational displays effectively replace glasses in VR/AR?
- <u>Q2</u>: How to address the vergence-accommodation conflict for users of different ages?
- <u>Q3</u>: What are (in)effective near-eye display technologies?

possible solutions: gaze-contingent focus, monovision, multiplane, light field displays, ...

• <u>non-presbyopes</u>: adaptive focus is <u>like real world</u>, but needs eye tracking!

Padmanaban et al., PNAS 2017

Padmanaban et al., PNAS 2017

at ACM SIGGRAPH 2016
Gaze-contingent Focus – User Preference

Padmanaban et al., PNAS 2017

Monovision VR

Konrad et al., SIGCHI 2016; Johnson et al., Optics Express 2016; Padmanaban et al., PNAS 2017

Monovision VR

- monovision did not drive accommodation more than conventional
- visually comfortable for most; particularly uncomfortable for some users

Konrad et al., SIGCHI 2016; Johnson et al., Optics Express 2016; Padmanaban et al., PNAS 2017

Multiplane VR Displays

near-eye display prototype Liu 2008, Love 2009

- Rolland J, Krueger M, Goon A (2000) Multifocal planes head-mounted displays. Applied Optics 39
- Akeley K, Watt S, Girshick A, Banks M (2004) A stereo display prototype with multiple focal distances. ACM Trans. Graph. (SIGGRAPH)
- Waldkirch M, Lukowicz P, Tröster G (2004) Multiple imaging technique for extending depth of focus in retinal displays. Optics Express
- Schowengerdt B, Seibel E (2006) True 3-d scanned voxel displays using single or multiple light sources. JSID
- Liu S, Cheng D, Hua H (2008) An optical see-through head mounted display with addressable focal planes in Proc. ISMAR
- Love GD et al. (2009) High-speed switchable lens enables the development of a volumetric stereoscopic display. Optics Express
- ... many more ...

Multiplane VR Displays

idea introduced Rolland et al. 2000

- Rolland J, Krueger M, Goon A (2000) Multifoca Contes head-mounted displays. Applied Optics 39
- Akeley K, Watt S, Girshick A, Banks M (20(1), stereo display prototype with multiple focal distances. ACM Trans. Graph. (SIGGRAPH)
- Waldkirch M, Lukowicz P, Tröster G 20 Wantple imaging technique for extending depth of focus in retinal displays. Optics Express
- Schowengerdt B, Seibel E (2006) Conscanned voxel displays using single or multiple light sources. JSID
- Liu S, Cheng D, Hua H (2008) An optical see-through head mounted display with addressable focal planes in Proc. ISMAR
- Love GD et al. (2009) High-speed switchable lens enables the development of a volumetric stereoscopic display. Optics Express
- ... many more ...

Huang et al., SIGGRAPH 2015

Near-eye Light Field Displays

Idea: project multiple different perspectives into different parts of the pupil!

/Target Light Field

Traditional HMDs - No Focus Cues

The Light Field HMD Stereoscope

Traditional HMDs - No Focus Cues

The Light Field HMD Stereoscope

Traditional HMDs - No Focus Cues

The Light Field HMD Stereoscope

Model Courtesy of Paul H. Manning

Huang et al., SIGGRAPH 2015

Traditional HMDs - No Focus Cues

The Light Field HMD Stereoscope

Model Courtesy of Paul H. Manning

Huang et al., SIGGRAPH 2015

Vision-correcting Display

printed transparency Huang et al., SIGGRAPH 2014

iPod Touch prototype

340

300 dpi or higher

prototype

Huang et al., SIGGRAPH 2014

Diffraction in Multilayer Light Field Displays

Wetzstein et al., SIGGRAPH 2011 Lanman et al., SIGGRAPH Asia 2011 Wetzstein et al., SIGGRAPH 2012 Maimone et all., Trans. Graph. 2013

No diffraction artifacts with LCoS

Hirsch et al, SIGGRAPH 2014

Summary

- focus cues in VR/AR are challenging
- adaptive focus can correct for refractive errors (myopia, hyperopia)
- gaze-contingent focus gives natural focus cues for non-presbyopes, but require eyes tracking
- presbyopes require fixed focal plane with correction
- multiplane displays require very high speed microdisplays
- monovision has not demonstrated significant improvements
- light field displays may be the "ultimate" display → need to solve "diffraction problem"

Making Virtual Reality Better Than Reality?

- focus cues in VR/AR are challenging
- adaptive focus can correct for refractive errors (myopia, hyperopia)
- gaze-contingent focus gives natural focus cues for non-presbyopes, but require eyes tracking
- presbyopes require fixed focal plane with correction, better than reality!
- multiplane displays require very high speed microdisplays
- monovision has not demonstrated significant improvements
- light field displays may be the "ultimate" display → need to solve "diffraction problem"

VR/AR = Frontier of Engineering

• Focus cues / visual accessibility

• Vestibular-visual conflict (motion sickness)

٠

- AR occlusions
 - aesthetics / form factor
 - battery life
 - heat
 - wireless operation

- low-power computer vision
 - registration of physical / virtual world and eyes
- consistent lighting
- scanning real world

- VAC more important
- display contrast & brightness

. . .

• fast, embedded GPUs

Capturing and Sharing Experiences

It's Not About Technology but Experiences!

Panorama mono & head orientation

Panorama mono & head orientation

Stereo Panorama stereo & no head orientation

Panorama mono & head orientation

Stereo Panorama stereo & no head orientation

Omnidirectional Stereo stereo & head orientation

Omnidirectional Stereo

widely used by YouTube VR, Google Daydream, Facebook, ...

Existing VR Cameras

Recorded Videos ~ 17 Gb/sec

Facebook's Surround 360

RAW Data: 17 Gb/sec

Compute time: days to weeks on conventional computer, minutes to hours on data center

Facebook's Surround 360

RAW Data: 17 Gb/sec Compute time: days to weeks on conventional computer, minutes to hours on data center

- F/3.5 175 deg fisheye lenses

Konrad et al., arxiv 2017

Konrad et al., arxiv 2017

Konrad et al., arxiv 2017

Conclusions

Advancing AR/VR technology requires deep understanding of human vision, optics, signal processing, computation, and more.

Technology alone is not enough – engineer experiences!

Stanford EE 267

E

Stanford Computational Imaging Lab

Light Field Displays

Light Field Cameras

Computational Microscopy

Image Optimization

Time-of-Flight Imaging

Near-eye Displays

Acknowledgements

Near-eye Displays

- Robert Konrad (Stanford)
- Nitish Padmanaban (Stanford)
- Fu-Chung Huang (NVIDIA)
- Emily Cooper (Dartmouth College)

Spinning VR Camera

- Robert Konrad (Stanford)
- Donald Dansereau (Stanford)

<u>Other</u>

- Wolfgang Heidrich (UBC/KAUST)
- Ramesh Raskar (MIT/Facebook)
- Douglas Lanman (Oculus)
- Matt Hirsch (Lumii)
- Matthew O'Toole (Stanford)
- Felix Heide (Stanford)

Gordon Wetzstein Computational Imaging Lab Stanford University

stanford.edu/~gordonwz

www.computationalimaging.org

