Flat-Panel Display Backplanes: Past, Present, and a Possible Future Option

Honeywell Sponsored 1-Day Bay-Area SID Conference

Country Inn, Sunnyvale, CA 24 March 2016

John F. Wager School of EECS Oregon State University Corvallis, OR 97331-5501,USA

(i) Past

AMLCD backplane

Backplane Process Flow I. a-Si:H TFT Etch-Stop (ES)

1. Deposition and definition of metal gate (M1)

J. F. Wager

Backplane Process Flow I. a-Si:H TFT Etch-Stop (ES)

- 2. Sequential deposition of SiN gate dielectric, i a-Si:H, and SiN etch-stop layer
- 3. Definition of SiN etch stop pad (M2)

24 March 2016

Oregon State

Backplane Process Flow I. a-Si:H TFT Etch-Stop (ES)

4. Deposition of n⁺ a-Si:H 5. Definition of TFT island (M3)

I. a-Si:H TFT Etch-Stop (ES)

- Deposition and definition of metal S, D contacts (M4) and removal of n⁺ a-Si:H
- 7. Deposition of final passivation layer and contact window opening to S, D, and G metals (M5)

Oregon State

24 March 2016

I. a-Si:H TFT Etch-Stop (ES)

I. a-Si:H TFT Etch-Stop (ES) Process Flow

- 1. Deposition and definition of metal gate (M1)
- 2. Sequential deposition of SiN gate dielectric, i a-Si:H, and SiN etch-stop layer
- Definition of SiN etch stop pad (M2)
- Deposition of n⁺ a-Si:H
- 5. Definition of TFT island (M3)
- 6. Deposition and definition of metal S, D contacts (M4) and removal of n⁺ a-Si:H
- Deposition of final passivation layer and contact window opening to S, D, and G metals (M5)

II. a-Si:H TFT Back-Channel Etch (BCE)

II. a-Si:H TFT Back-Channel Etch (BCE) Process Flow

- 1. Deposition and definition of metal gate (M1)
- 2. Sequential deposition of SiN gate dielectric, i a-Si:H, and n⁺ a-Si:H
- 3. Definition of a-Si TFT island (M2)
- 4. Deposition and definition of metal S, D contacts (M3)
- 5. Etch back of exposed n+ a-Si:H (over-etch to ensure clearance)
- Deposition of final passivation layer and contact window opening to S, D, and G metals (M4)

(ii) Present

J. F. Wager

Larger and/or higher resolution AMLCD displays require a backplane semiconductor with a higher mobility!

Display Backplane Options

Property	a-Si:H	LTPS	IGZO
Microstructure	amorphous	polycrystalline	amorphous
V_{T} uniformity	good	fair*	fair*
V_T stability	poor	good	fair
Mobility (cm ² V ⁻¹ s ⁻¹)	~ 1	~ 50-100	~ 10-30
Mobility Uniformity	good	fair*	fair*
Device type	NMOS	CMOS	NMOS
Process complexity	low	high	low

Mobility is not the whole story. **Off current and** process complexity also matter!

Mobility versus Off Current

III. LTPS nMOS

III. LTPS TFT Non-Self-Aligned n-channel Process Flow

- 1. Glass plate capping by SiN and SiO₂
- 2. a-Si:H deposition by PECVD
- 3. De-hydrogenation at 400-450 °C in N₂
- 4. Poly-Si island definition (M1)
- 5. Low dose B⁺ ion doping
- 6. S, D definition and P⁺ ion doping (M2)
- 7. Laser crystallization
- 8. Gate oxide deposition by PECVD
- 9. Contact window definition (M3)
- 10. S, D, and G metal deposition and definition (M4)
- 11. Anneal @ 350 °C in N₂/H₂ to sinter contacts

IV. LTPS CMOS

IV. LTPS TFT Self-Aligned with LDD n-channel CMOS Process Flow

- 1. Glass plate capping by SiN and SiO₂
- 2. a-Si:H deposition by PECVD
- 3. De-hydrogenation at 400-450 °C in N₂
- 4. Poly-Si island definition (M1)
- 5. Low dose B⁺ ion doping
- Laser crystallization
- 7. Gate oxide deposition by PECVD
- 8. Gate metal deposition and definition (M2)
- 9. LDD definition and P⁺ ion doping (n-channel only) (M3)
- 10. Definition of n-ch S, D and P⁺ ion doping (M4)
- 11. Definition of p-ch S, D and B⁺ ion doping (M5)
- 12. Dopant activation (laser or furnace)
- 13. Capping oxide deposition
- 14. Contact window definition (M6)
- 15. S, D metal deposition and definition (M7)
- 16. Anneal @ 350 °C in N₂/H₂ to sinter contacts
- 17. Capping oxide deposition
- 18. Contact window definition (M8)
- 19. ITO deposition and definition (M9)

V. Oxide TFT Etch-Stop (ES)

V. Oxide TFT Etch-Stop (ES) Process Flow

- 1. Deposition and definition of metal gate (M1)
- 2. Deposition of gate dielectric
- 3. Deposition of IGZO and etch-stop layers
- 4. Definition of etch-stop pad (M2)
- 5. Definition of IGZO layer (M3)
- 6. Deposition and definition of S, D metallization (M4)
- Deposition of final passivation layer and contact window opening to S, D, and G metals (M5)

J. F. Wager

VI. Oxide TFT Back-Channel Etch (BCE)

VI. Oxide TFT Back-Channel Etch (BCE) Process Flow

- Deposition and definition of metal gate (M1)
- 2. Deposition of gate dielectric
- 3. Deposition and definition of S, D metal (M2)
- 4. Deposition of IGZO
- 5. Definition of IGZO layer (M3)

Deposition of final passivation layer and contact window opening to S, D, and G metals (M4)

Present...

3

Backplane Process Flow

III. LTPS nMOS

III. LTPS TFT Non-Self-Aligned n-channel Process Flow

- 1. Glass plate capping by SiN and SiO₂
- 2. a-Si:H deposition by PECVD
- 3. De-hydrogenation at 400-450 °C in N₂ *
- 4. Poly-Si island definition (M1)
- 5. Low dose B⁺ ion doping
- 6. S, D definition and P⁺ ion doping (M2)
- 7. Laser crystallization <
- 8. Gate oxide deposition by PECVD
- 9. Contact window definition (M3)
- 10. S, D, and G metal deposition and definition (M4)
- 11. Anneal @ 350 °C in N₂/H₂ to sinter contacts

A bit more on: **Oxide TFTs** or IGZO

J. F. Wager

Amorphous oxide semiconductor (AOS)					ors
11	12	13	14	15	
29	30	31	32	33	4
Cu	Zn	Ga	Ge	As	
63.54	65.37	69.72	72.59	74.92	
47	48	49	50	51	5
Ag	Cd	In	Sn	Sb	
107.87	112.40	114.82	118.69	121.75	
79	80	81	82	83	6
Au	Hg	TI	Pb	Bi	
196.97	200.59	204.37	207.19	208.98	
					1

H. Hosono et al., J. Non-Crystalline Solids 203, 334 (1996).

24 March 2016

In, Sn, Zn - AOS Stalwarts

24 March 2016

Oregon State

Amorphous Semiconductor Mobility

$$\mu_{drift} = \frac{n}{n+n_T} \mu_0$$

n = free carriers

Oregon State

 n_T = trapped carriers

24 March 2016

 μ_0 = diffusive (Brownian motion) mobility

$$\mu_0$$
 (IGZO) $\approx \mu_0$ (a-Si:H)

Therefore, the Hosono picture is incorrect!

Amorphous Semiconductor Mobility

DISORDER (IGZO) < DISORDER (a-Si:H)

cation sublattice disorder

24 March 2016

Oregon State

bond angle disorder

K.S. Stewart et al., JNCS 432B, 196 (2016).

Amorphous Semiconductor Transport Simulator, https://nanohub.org/resources/asts

frontline technology

Oxide TFTs: A Progress Report

For flat-panel-display backplane applications, oxide-TFT technology is the new kid on the block – recently conceived and in its early stages of commercialization. How is it going for oxide-TFT technology as it attempts to match up with a-Si:H and LTPS technology?

by John F. Wager

J.F. Wager, Information Display, 1/16 (2016) 16-21.

Table 1: Oxide-TFT products are in blue and products that have been announced are in red.

Product	Maker	Display	Product	Maker	Display
Phone			Laptop		
Aquos Compact SH-02	Sharp	4.7", 1080 × 1920, 469 ppi	Radius 12	Toshiba	12.5", 3840 × 2160, 352 ppi
Aquos Xx2 mini	Sharp	4.7", 1080 × 1920, 469 ppi	Satellite P55t-B5262	Toshiba	15.6", 3840 × 2160, 282 ppi
Aquos Xx2 (502SH)	Sharp	5.3", 1080 × 1920, 415 ppi	Skylake NS850	NEC	15.6", 3840 × 2160, 282 ppi
Aquos Zeta SH-01	Sharp	5.5", 1080 × 1920, 401 ppi	VersaPro Type VG	NEC	13.3", 2560 × 1440, 221 ppi
Aquos Zeta SH-02	Sharp	4.7", 720 × 1280, 300 ppi	XPS 12 (option)	Dell	12.5", 1920 × 1080, 176 ppi
Aquos Zeta SH-03	Sharp	5.5", 1080 × 1920, 401 ppi	XPS 15 (option)	Dell	15.6", 3840 × 2160, 282 ppi
Aquos Zeta SH-04	Sharp	5.4", 1080 × 1920, 408 ppi	Caming Lanton		
Aquos Zeta SH-06	Sharp	4.8", 1080 × 1920, 459 ppi	Alienware 13 (option)	Alienware	13.3" 3200 × 1800.276 ppi
Infobar A03	Kyocera	4.5", 1080 × 1920, 490 ppi	Alienware 17 (option)	Alienware	17 3" 3840 × 2160 255 ppi
m1 note	Meizu	5.5", 1080 × 1920, 401 ppi	Razor 14" Blade	Razor	14° 3200 x 1800 262 ppi
m2 note	Meizu	5.5", 1080 × 1920, 401 ppi	X3 Plux v3	Aorus	13 3" 3200 × 1800, 202 ppr
MX5	Meizu	5.5", 1080 × 1920, 401 ppi	X3 Plus v4	Aorus	13.9 " 3200×1800 , 270 pp
Nubia Z5S	ZTE	5", 1080 × 1920, 441 ppi	20110014	110103	15.5 , 5200 * 1600, 201 ppr
Nubia Z5S mini	ZTE	4.7", 720 × 1280, 312 ppi	Desktop		
Readmi 2 Prime	Xiaomi	4.7", 720 × 1280, 312 ppi	iMac with 5K Retina display	Apple	27", 5120 × 2880, 218 ppi
Torque G02	Kyocera	4.7", 720 × 1280, 312 ppi	21.5" iMac with 5K Retina	Apple	21.5", 4096 × 2304, 218 ppi
Monitor			display		
LQ-101R1SX03	Sharp	10.1", 2560 × 1600, 299 ppi	TV		
PN-K322B	Sharp	31.5", 3840 × 2160, 140 ppi	LV-85001	Sharp	85", 7680 × 4320, 104 ppi
PN-321Q	Sharp	31.5", 3840 × 2160, 140 ppi	Smart OLED TV 55EG9100	LG Display	54.6", 1920 × 1080, 40 ppi
UltraSharp UP3214Q	Dell	31.5", 3840 × 2160, 140 ppi	Smart 3D Curved OLED TV	LG Display	54.6", 1920 × 1080, 40 ppi
UltraSharp UP3216Q	Dell	31.5", 3840 × 2160, 140 ppi	55EC9300		
PA322UHD-BK-SV	NEC	31.5", 3840 × 2160, 140 ppi	Smart 3D OLED TV	LG Display	54.6", 3840 × 2160, 81 ppi
Tablet			Smart 3D OLED TV	LG Dieplay	64.5" 3840 x 2160, 68 mi
i6 Air	Cube	9.7", 2048 × 1536, 264 ppi	65FF9500	LO Display	04.5 , 5640 × 2100, 66 pp1
iPad Pro	Apple	12.9", 2732 × 2048, 264 ppi	Smart 3D Curved OLED TV	LG Display	54 6' 3840 × 2160 81 ppi
LaVie Z	Lenovo	13.3", 2560 × 1440, 221 ppi	55EG9600	LO Display	54.0 , 5040 × 2100, 01 pp1
Lifebook S935	Fujitsu	13.3", 1920 × 1280, 221 ppi	Smart 3D Curved OLED TV	LG Display	64.5", 3840 × 2160, 68 ppi
Lifebook T935	Fujitsu	13.3", 2560 × 1440, 221 ppi	65EG9600	20 Display	0.10,0010 2100,00 pp1
Lifebook T904	Fujitsu	13.3", 2560 × 1440, 221 ppi	Smart 3D Curved OLED TV	LG Display	64.5", 3840 × 2160, 68 nni
Lifebook U904	Fujitsu	14", 4300 × 1800, 262 ppi	65EG9700	m	,
P98 Air	Teclast	9.7", 2048 × 1536, 264 ppi	Smart 3D Curved OLED TV	LG Display	76.7", 3840 × 2160, 57 ppi
V919 Air	Onda	9.7", 2048 × 1536, 264 ppi	77EG9700		, ,,,,

Table 2: Oxide-TFT manufacturing activity is in blue and announced activity is in green.²⁻⁶

Company	Year	(sheets per month)	Fab Size
Sharp ²	2015	30,000	Gen 8
"	2016	30,000 + ?	Gen 8 + ?
Samsung ²	2015	40,000	Gen 5
"	2016	100,000	Gen 5
LG Display	2014	9,000	Gen 8
33	2015	30,000	Gen 8
3 7	2016	60,000	Gen 8
BOE ⁴	~2015–2016	90,000	Gen 8.5
CPT ⁵	2015 Q4	?	Gen 4
"	2016	?	Gen 4 + Gen 6
CEC Panda ⁶	~2015–2016	?	Gen 8.5

Oxide TFTs

ΔV_{th} 0.35 V -0.38 V P/NBTS (60 °C, ±30 V, 1500 s)

24 March 2016

Oregon State

ΔV_{th} = -0.58 V @ 1000 nit NBIS (60 °C, -30 V, 1500 s)

Courtesy Applied Materials

Oxide TFTs

Courtesy Applied Materials

J. F. Wager

J. F. Wager^{**} Stress Conditions : 60 °C, ±30 V, 1500 s35

NBTS*

(V)

-0.11

0.10

-0.03

UNIVERSITY

(iii) Future?

J. F. Wager

Amorphous Metal Thin Film Surfaces

Metal-Insulator-Metal (MIM) Diode

J. F. Wager

Oregon State

24 March 2016

VII. AMNR TFDs

VII. AMNR Process Flow

- 1. Deposition and definition of bottom metal (M1)
- 2. Deposition of insulator
- 3. Deposition and definition of top metal (M2)

4. Deposition of inter-layer dielectric (etch stop) and contact window opening to top metal contacts (M3)

- Ultra-simple process
- Low temperature sensitivity
- Low light sensitivity
- Superior to Poole-Frenkel TFDs

J. F. Wager

frontline technology

Amorphous-Metal Thin Films Enable Ultra-High-Definition Display Backplanes

Amorphous-metal thin films can enable a new generation of TFT-free display backplanes for ultra-high-definition (UHD) LCD TVs. This technology builds upon previous efforts to commercialize dual-select thin-film-diode backplanes and addresses issues faced by TFTs in UHD-TV applications through use of the amorphous-metal non-linear resistor. Demonstrating the reliability of amorphous-metal-based tunneling electronics and the scalability of these materials to panel-size processing tools are now the key challenges for this technology.

by Sean Muir, Jim Meyer, and John Brewer

S. Muir et al., Information Display, 1/16 (2016) 22-27.

guest editorial

Amorphous? Again??

by John F. Wager

In the beginning, there was amorphous hydrogenated silicon. That is the gospel; at least with respect to the materials aspects of flat-panel-display backplane technology. More recently, there are amorphous-oxide semiconductors. The article I have contributed to this issue's special coverage of materials, "Oxide TFT: A Progress Report," is essentially a

report card on the above-mentioned materials. They form the basis of oxide thin-filmtransistor (TFT) or indium gallium zinc oxide (IGZO) technology. Oxide-TFT or IGZO technology is vital to what is going on with backplanes today. The other materialsrelated article in this issue, "Amorphous-Metal Thin Films Enable UHD Display Backplanes," by Sean Muir, Jim Meyer, and John Brewer from Amorphyx, Inc., proposes that the future is the amorphous-metal non-linear resistor (AMNR). What gives with this obsession with amorphous?

J.F. Wager, Information Display, 1/16 (2016) 4,43.

(i) Past: a-Si:H

(ii) Present: a-Si:H → LTPS & IGZO

(iii) Future: AMNR TFD's?

✓ Insulator depositon via PECVD or ALD?

Peformance/stability/reliability/scalability?

